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Preface

About This Book

Firms and organisations cannot exist without customers. They

essentially constitute the key ingredient to make a firm prof-

itable and add shareholder and societal value. Despite recent

technological advances in both data storage as well as process-

ing and analysis, many small to large-scale firms are still strug-

gling to quantify customer value, optimise customer relation-

ships, facilitate customer experiences and identify customer

journeys.

Due to a nearly continuously expanding product portfolio, with

new products and services being developed and marketed on

an on-going basis, along a diversity of existing as well as inno-

vative channels, modeling customer lifetime value is a far from

simple exercise with many challenges and difficulties arising.

More specifically, throughout our dealings with firms, we of-

ten found that simple questions such as ”Who is actually your
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customer?”, ”Who are your most valuable customers?”, ”What

is the best way to acquire new customers”?, ”Why do your cus-

tomers leave you?”, ”What product/service should be offered to

what customer?”, ”How can you sell more to your customers?”,

”How do you measure customer value?”, often provoked in-

tense (if not fierce) discussions with answers not always readily

available and uniformly agreed upon by business practitioners

across different departments. This book tries to answer exactly

these questions using data-driven and analytical techniques

and insights. More specifically, we try to provide a clear and

to-the-point guide of how to define, quantify, model and de-

ploy Customer Lifetime Value (CLV) models from various per-

spectives by first identifying and defining the key problems and

then offering ways to tackle them using carefully selected data

combined with state of the art analytics.

What Makes This Book Different?

This book is based on the unique complimentary experience of

both authors having worked in (customer) analytics for more

than 30 years combined, both in industry and academia. More

specifically, both authors have co-authoredmore than 300 sci-

entific publications and various books on the topics covered

in this book and have worked with firms in different indus-

tries, including (online) retailers, financial institutions, manu-

facturing firms, insurance providers, NFP organisations, gov-

ernments, etc. all over the globe estimating, validating, de-

12
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ploying, governing and monitoring analytical Customer Life-

time Value models.

The authors wrote this book with a very pragmatic focus in

mind. In other words, the concepts, methods and techniques

covered try to balance out a mix between sound and solid

proven theories on the one hand and practical applicability on

the other hand. Hence, we deliberately don’t focus on overly

complex techniques based on heavy mathematical underpin-

nings with limited to zero added business-value.

The book also comes with a web site www.clvbook.com which

features various data sets and R/Python code to illustrate the

techniques and approaches discussed. This will allow practi-

tioners to efficiently and swiftly try out what they have learned

in their own business areas.

Who This Book Is For?

This book is for anyone who is curious to know more about

modeling Customer Lifetime Value or intrigued to make

his/her organisation fully customer-centric. A first target au-

dience consists of business practitioners across all industries

where customers are considered a key asset. Example reader

profiles are marketeers, customer/brand/channel/relation-

ship managers, marketing and data scientists. Also consultants

may find our book useful to help their clients in their CLV ef-

forts. C-level executives (e.g., Chief Executive Officers, Chief

13
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Marketing Officers, Chief Analytics Officers, Chief Data Offi-

cers) as well as tactical and operational levels may benefit from

reading this book to be more closely aligned with the data sci-

entists, marketing modelers and analysts directly working on

modeling CLV.

Secondly, the book can also used as a handbook by academics

teaching courses on the topic, both undergraduate as well as

postgraduate. It features various handy add-ons such as mul-

tiple choice questions at the end of each chapter, worked out

case studies in Python and R, references to background litera-

ture and links to ON-LINE courses which can help facilitate the

learning experience.

For those who are just starting to find their way around in an-

alytics, we are convinced that this book can be an important

guide to help you use it for CLV modeling, but would advice

to first briefly refresh your knowledge on descriptive statistics

(e.g., mean, standard deviation, confidence intervals, hypothe-

sis testing) so as to maximize your reading experience.

Structure Of The Book

The book starts by providing a basic introduction to CLV mod-

eling where the key concepts are defined and illustrated with

some examples. In Chapter 2, we review and refresh various

supervised and unsupervised analytical techniques that will be

used extensively in later chapters. Chapter 3 discusses the

14
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well-known Recency, Frequency and Monetary (RFM) frame-

work as the layman’s approach to CLV analysis. The RFM fea-

tures introduced will be used extensively in later chapters as

predictors for various CLV relatedmodeling exercises. Chapter

4 elaborates on customer acquisition by zooming in on look-

alike modeling and prospect- and lead conversion modeling.

Chapter 5 builds further upon these ideas by reviewing how to

set up smart marketing campaigns so as to maximize their re-

sponse rates and turn leads into customers. Chapter 6 learns

how to prevent your customers from churning or leaving your

firm. Markov chains are covered in chapter 7 as an interest-

ing tool to see how customers migrate between their different

CLV states. Chapter 8 discusses customer journey analysis to

better understand how your customers interact with your firm

and by means of what channels and/or touchpoints. Chapter

9 elaborates on probabilistic models such as the Pareto/NBD

submodel to predict the future number of transactions of a

customer and the Gamma/Gamma submodel to estimate the

average profit or monetary value per transaction, both essen-

tial elements to estimate the CLV. Chapter 10 discusses market

segmentation by reviewing both customer heterogeneity and

profiling. Recommender systems are extensively reviewed in

chapter 11. The book concludes with chapter 12 by covering

the deployment, governance and monitoring of CLV models.

We recommend going through the book from start to finish if

this is your first reading, and refer back to specific sections

later on to get a refresher on specific contents. Since we be-

15



ADDITIONAL LEARNING MATERIAL

lieve the topic of CLV modeling to be intricate enough already,

we have deliberately kept its structure simple and to the point:

every chapter is organized in a series of sections with subsec-

tions only sparingly being used. We don’t overcomplicate the

book with lots of (complex) formulas, call-out boxes, etc. We

do, however, provide plenty of references which should offer

lots of further info and extra reading material to those looking

to expand their knowledge.

Additional Learning Material

As already mentioned, the book comes with the following web-

site: www.CLVbook.com which features various case studies in

Python and R to complement the textual material. Each chap-

ter concludes with a set of multiple choice questions to assist

and verify the reader’s assimilation of the material. Extensive

referencing to background literature is provided to help those

readers who are interested in finding out more about a spe-

cific topic discussed. The bibliography features more than 150

citations.

Furthermore, as another interesting add-on to the learning ex-

perience, we are happy to refer to our following BlueCourses

courses (www.bluecourses.com):

• Customer Lifetime Value Modeling

• Recommender Systems

• Machine Learning Essentials

16
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• Deep Learning

• Text Analytics

Each of the above courses features several hours of pre-

recorded videos, Python/R examples, real-life case studies,

multiple choice questions, and various references to back-

ground literature. The courses can also be taught on-site if

interested (please send us an e-mail in case).

Front Cover

The front coverwas shot at Bar Louis https://www.barlouis.be/

where the idea of the book originated. Bar Louis is a very cozy,

trendy bar in the heart of Leuven (Belgium) serving an excellent

food and drinks menu run by a passionate and inspiring lady

of the house, miss Katelijne Vandenbroeck, whom we are very

thankful for this opportunity. Bart is having a Tripel Karmeliet

and Arno an Omer, both their favourite (Belgian!) beers. Look-

ing forward to seeing you there!

17
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Chapter 1

Introduction to Customer

Lifetime Value

Overview

In this chapter, we set the stage for the remainder of the book.

We first relate customer value to firm value and define the cus-

tomer lifetime value (CLV). We then extensively zoom in on the

various revenue and cost components of the CLV. A next sec-

tion elaborates on customer equity and its relation to CLV. This

is followed by reviewing some CLV modeling examples taken

from the industry. We discuss various marketing actions that

can be undertaken to optimize the CLV. Finally, the chapter

concludes by discussing various approaches to model CLV.
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SETTING THE STAGE

FIRM VALUE

CLV

CUSTOMER 
ACQUISITION

CUSTOMER 
RETENTION

CUSTOMER
EXPANSION

MARKETING PROGRAMS

CE

Figure 1.1: Customer value versus firm value.

Setting The Stage

Milton Friedman introduced the age of shareholder primacy,

which basically implied that a key reason that companies exist

is to maximize shareholder value 1. This can be done by care-

fully managing a firm’s key assets which are, amongst others,

its infrastructure, buildings and equipment, its inventory, its

know-how, its employees and its customers. Unfortunately,

nowadays, too many companies focus on their physical and fi-

nancial assets thereby under-prioritizing two of their other key

assets: their customers and employees! In this book, we focus

on the customers, and how to appropriately value them across

their entire lifetime and relationship with the firm.

In their 2006 Journal of Service Research paper, Gupta et al

1https://www.nytimes.com/1970/09/13/archives/a-friedman-doctrine-
the-social-responsibility-of-business-is-to.html
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[71] already outlined the relationship between customer value

and firm or shareholder value as you can see visualized in Fig-

ure 1.1. Marketing programs are typically being setup for cus-

tomer acquisition, customer retention and customer expan-

sion or deepening of customer relationships. All these directly

impact the customer lifetime and as such the customer equity

of the firm, which in turn influences firm or shareholder value.

Put differently, to maximize firm value firms should invest in

their number one asset: their customers!

To further reinforce this statement, the term customer cap-

italism was put forward by Roger Martin in 2010, then dean

of the University of Toronto’s Rotman School of Management

[113]. The concept primarily boils down to putting your cus-

tomers first. Too much short term profit and quarterly earn-

ings pressure have a damaging effect on customer relationships

and value. Think about cutting back on customer service and

experience, minimizing customer call handling times, imposing

unjustified and unnecessary customer fees and compromising

product quality as examples. This is being further exacerbated

by the fact that most modern day accounting standards (e.g.,

IFRS 9) and reporting rules do not include customer value at

all. Luckily, some CEOs are starting to realize and success-

fully manage the connection between customer and firm value.

Popular examples are: Amazon’s Jeff Bezos, Costco’s Jim Sine-

gal, and Vanguard’s Jack Brennan. As Bezos puts it, customer

focus is simply not enough, you have to be customer obsessed.

”The No 1 Thing that has made us successful by far
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is obsessive compulsive focus on the customer.” (Jeff

Bezos, CEO Amazon)

Vanguardwas an early adopter of theNet Promotor Score (NPS)

which essentially captures the response to the question 2: ”How

likely are you to recommend a product or service to a friend

or colleague?”. The question is answered on a scale from 0 to

10 where scores above 9 correspond to promotors with high

customer value in terms of generating more sales and posi-

tive word-of-mouth whereas scores below 6 represent detrac-

tors or customers with low value and at risk of leaving the firm

(also called churning). The NPS metric is now used by various

firms world-wide to measure and manage customer relation-

ships and value.

Usingmodern data-driven capabilities, customer health scores

nowadays extend traditional NPS scores. NPS scores are still

a vital part of customer health, but customer health scores

also capture product usage information, elements of cross-

functional touch points such as billing or support, and even ex-

ternal review data [78]. Hence, customer health scores promise

to serve as a lead indicator to gain a better sense of the cus-

tomers’ engagement. Firms start to sense the importance of

their customer base as a source of value and invest in nurtur-

ing the relationship with their customers. New roles that fo-

cus on the customer, such as customer success managers are

popping up. These customer success managers are customer

facing, indirect sales roles that have as a primary objective to
2https://netpromoterscore.guru/vanguard-research-com
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engage customers to ensure value outcomes and ongoing suc-

cessful use of the product [79]. Hence, they fulfill a crucial role

in maximizing the long term value of the customer base.

To further illustrate some of our previous points we included

three quotes from a recent Harvard Business Review contribu-

tion by Rob Markey [111].

“It would be irresponsible for any leader to ignore

customer value as a proven source of profitable

growth.”

“Loyalty leaders grow revenues roughly 2.5 times

as fast as their industry peers and deliver two to

five times the shareholder returns over the next 10

years.”

Definition

Customer Lifetime Value (CLV), often also referred to as Life-

Time Value (LTV), was defined by Malthouse and Blattberg in

2005 as the present value of the expected benefits less the costs

of initialising, maintaining and developing the customer rela-

tionship [109]. It can be calculated as:

CLV =

T∑
t=1

(Rt − Ct)st
(1 + d)t

(1.1)
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The key elements are:

• the costs at time t: Ct

• the revenue at time t: Rt

• the probability customer is still alive at time t: st
• the discount rate (d)

• the time horizon (T )

Month Revenue Cost Survival (Rt − Ct)st/(1 + d)t

t Rt Ct probability (st)
1 150 5 0,94 135,22
2 100 10 0,92 81,50
3 120 5 0,88 98,82
4 100 0 0,84 81,37
5 130 10 0,82 94,57
6 140 5 0,74 95,25
7 80 15 0,7 43,04
8 100 10 0,68 57,43
9 120 10 0,66 67,59
10 90 20 0,6 38,79
11 100 0 0,55 50,40
12 130 10 0,5 54,55

CLV 898,53

Table 1.1: Calculating CLV.

In Table 1.1, you can see an example calculation of the CLV.

We calculated the CLV for a 12 month time period taking the

weighted average cost of capital or WACC as the discount fac-

tor. Note that the yearly WACC was set at 10% which corre-

sponds to a monthly WACC of 1%.

Key Parameters

Let’s elaborate on each of the CLV key parameters into some

more detail. First the time horizon, T . Theoretically, this should
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be infinity. Unfortunately, this is practically infeasible since it’s

simply impossible to predict that far in the future. Based on our

business experience, we would suggest to set it to three or five

years at maximum.

Next, we have the discount rate d. Theoretically, we don’t know

this one yet as we would have to wait until T . A difference also

needs to be made between the monthly versus yearly discount

rate. Remember the relationship (1 + d) = (1 + m)12 with d

the yearly discount rate and m the monthly discount rate. It is

typically chosen according to the company’s policy. A first and

commonly used option is theWeighted Average Cost of Capital

or WACC which is the rate that a company pays to all its secu-

rity holders (e.g., shareholders and debt) to finance its assets.

We have also seen some firms using the inflation as the dis-

count rate. In case the short-term relationship is considered

important, a high discount rate is chosen, such as 15% annually.

In case a long-term relationship is considered important, a low

discount rate is chosen, such as 5% annually. A higher discount

rate typically implies a lower CLV since future cash flows are

less worth now. Hence, it is recommended to be conservative

when setting the discount factor.

The revenues, Rt, and costs, Ct, should incorporate both di-

rect and indirect revenues and costs, if possible. Direct rev-

enues are the revenues of directly interacting with the cus-

tomer such as a product or service purchase. Examples of indi-

rect revenues are word-of-mouth effects (assuming these are

positive) or positive reviews posted by the customer on-line.
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Direct costs are the costs to serve a particular customer such

as the costs that occurwhen selling a particular product or ser-

vice to a customer (e.g., product costs, PayPal costs, delivery

costs, etc). Indirect costs are the costs that relate to the var-

ious supporting activities as provided by business units such

as customer service, IT, etc. Obviously, indirect revenues and

costs are a lot harder to quantify that direct costs and revenues

that’s why we see many firms ignoring those in their CLV cal-

culations. Do note that sinceRt and Ct are measured for future

timestamps, they need to be estimated themselves and as such

can be the result of predictive analytical models.

Finally, we have the survival probability st. Remember, this rep-

resents the probability the customer is still alive at time t. Also

this parameter varies in time depending upon how the cus-

tomer relationship evolves. It is typically also estimated using

survival analysis models [29, 92].

Customer Equity

We already briefly mentioned the term customer equity. First

of all, this term has nothing to do with equity in the traditional

sense of the word meaning ’ownership’. Essentially, customer

equity can be defined as the sumof the customer lifetime values

of all customers of the firm,

Customer Equity =
n∑

i=1

CLVi, (1.2)
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with n the number of customers.

When calculating customer equity, one commonly aggregates

the CLV across all customers, all products, all channels, etc.

Doing this will also allow to spot opportunities such as which

customer, product or channel has higher CLV potential which

can then bematerialized by setting up the rightmarketing cam-

paigns targeted at the right customer, product or channel.

Customer equity is sometimes also approached from three per-

spectives: value equity, which represents the customer’s eval-

uation of the value of the product or service (e.g., what do I

think about the newest Apple iPhone), brand equity which rep-

resents the customer’s evaluation of the brand (e.g., how do I

perceive Apple as a brand?) and retention equity, which rep-

resents the customer’s probability to stay with the brand even

when it’s expensive (e.g., how likely am I to leave from Apple to

Samsung?).

Popular examples of firms that have high customer equity are

McDonalds, Apple and Facebook. Customers of these firms

typically perceive their products to be of high value (value eq-

uity), choose the brand for a particular reason (brand equity)

and are likely to stay with them and develop a long-lasting sus-

tainable relationship (retention equity).

Customer equity essentially measures how much the firm is

worth at a particular point in time as a result of the firm’s cus-

tomer management efforts. As mentioned earlier, it is however

directly related to the shareholder value of the firm since a high
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customer equity value is directly related to a higher profit and

hence higher stock prices and/or dividends.

Industry Adoption

By means of CLV modeling, The Royal Bank of Canada (RBC)

identified that medical students were high CLV customers3,

evaluated over long periods of time. The bank therefore imple-

mented a program to satisfy their needs early in their careers,

as well as during the progression of their careers, with prod-

ucts such as credit cards, help with student loans, and loans to

set up new practices. In the first year, RBC’s market share in

this segment boosted from 2 percent to 18 percent, and aver-

age saleswere nearly four times higher than those to an average

customer. The loyalty of these customers also was very high,

which reduces the risk of churn. In summary, this segment

represents very high CLV customers, and the firm’s targeted

acquisition, onboarding, and expansion strategies allowed it to

manage those valuable customers as they migrated from be-

ing students, to setting up their medical practices, to achieving

professional success.

According to research by CounterPoint, a global industry anal-

ysis firm headquartered in Asia, an Apple power iPhone user

can generate a CLV of about US$2,400 over a period of 30

months by subscribing to its continuously evolving portfolio of

3https://foster.uw.edu/wp-content/uploads/2017/03/MarketingStrategy
Chapter03-2.4.pptx
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services 4. In fact, research has indicated that CLV increases

about two to three times when a company switches to a sub-

scription model 5. As an example Amazon prime customers

who usually get free shipping and ad-free music streaming (see

https://www.amazon.com/gp/prime) spend significantly

more than non-prime customers. Similar multiples apply with

other subscription based providers such as Netflix.

Though CLV should be a key instrument to any marketeer to

manage customer relationships, a 2018 report by Criteo6, an

on-line advertising company, examined the state of CLV adop-

tion in UKmarketing programs by surveying 100marketers and

2,023 consumers across the UK. Rather astonishingly, it was

found that only over a third (34%) were completely aware of

the term and its connotations. Based on our recent dealings

with firms, we fear that not much has changed since then.

Marketing Actions To Optimize CLV

Various marketing actions can be undertaken to optimize (i.e.,

increase or maintain) the CLV. A first example is a customer re-

tention campaign which focuses on keeping possibly dissatis-

fied customers. As an example, consider a customer contacting

4https://www.counterpointresearch.com/apple-iphone-apple-watch-pric
e-drop-strategic-masterstrok

5https://www.forbes.com/sites/forbesfinancecouncil/2021/02/22/the-sec
ret-to-long-term-consumer-tech-success-subscription-pricing/?sh=3f9c0f0b
5883

6https://www.criteo.com/wp-content/uploads/2018/03/Criteo-UK-Co
mmerce-Marketing-Forum.pdf
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your service desk to file a complain about your products or ser-

vice (e.g., expensive roaming tariffs or bad coverage for a Telco

provider). This is a customer which is clearly at risk of leaving

your firm (also called customer churning, customer defection,

customer attrition), hence it may make sense to give him/her

a coupon, a free upgrade or some other compensation. Past

research has shown that the average customer is actually quite

forgiving in the sense that if (s)he feels the dissatisfaction is

heard and acted upon by the firm, (s)he will not leave and stay

with the firm. We will come back to this more extensively in

the chapter on churn prediction.

Another option is further deepening customer relationships by

selling additional products or services to your existing cus-

tomer portfolio using X-selling. The aim here is to change

the intended purchase behavior of a customer using patterns

learned fromdata. This can be done in three possible ways: up-

selling, cross-selling or down-selling. The idea of up-selling is

to sell more of a given product, usually at the time of purchase.

An example of this is if you order a lager beer (e.g., Stella Ar-

tois) and the waiter recommends an upscale, more expensive

beer instead (e.g., a specialty Trappist beer such as Westmalle).

Cross-selling aims at selling an additional product or service.

For example, the waiter might also recommend some abbey

cheese as it pairs well with a Westmalle. Finally, down-selling

means selling less of a product or service in order to maintain

a sustainable, long-lasting customer relationship. For example,

if you had toomany beers and order yet another one, thewaiter
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might discourage you from doing so and recommend water in-

stead. From a business perspective, it is important to under-

stand which products are often purchased together, so as to

make good recommendations. In fact, building good recom-

mender systems is a research topic on its own with Netflix and

Amazon being prominent examples spearheading this technol-

ogy.

Customer acquisition aims at expanding your customer base

by acquiring new customers. This can be done by setting up

well-targeted marketing campaigns either off-line or on-line.

Popular examples of off-line campaigns are sending out flyers,

brochures, order catalogs or billboard advertising. Examples of

on-line campaigns are banners (often served by Ad networks

such as Google Adsense), e-mails (preferably solicited instead

of SPAM), search enginemarketing, and social mediamarketing

(on e.g. Facebook, YouTube, Twitter, Instagram, etc).

Simplifying customer experiences is another interesting strat-

egy to contemplate. Far too often, we have witnessed that the

customer onboarding processes adopted by many (on-line or

off-line) firms nowadays are too complex or red tapey which

may create an adverse effect and turn a prospect into a non-

interested party. One-click simple buying processes requir-

ing only the strict minimum of information needed to com-

plete the purchase are a highly recommended customer prac-

tice. Closely related to this is the payment processes adopted

by firms. Far too often, to avoid fraud from happening, these

processes involve various steps of authentication with the risk
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of losing customers during the cumbersome process (requir-

ing sometimes even different hardware devices to confirm your

identity). It is however always recommended to properly and

accurately offset the complexity of the payment process and

the risk of losing customers against the risk of fraudwith a sim-

ple payment process but less customers lost along the way.

Customer journey analysis is another key marketing tool that

could come in handy to optimize your CLV. It basically illus-

trates the various activities, states or touchpoints and trans-

actions that a customer can be in when buying a mortgage.

Customer journey analysis can be used to get a clear and com-

prehensive picture of the overall process and highlight process

deficiencies such as excessive processing times, deadlock sit-

uations, circular references, and unwanted customer leakage

(due to incorrect web links, for example), among others. We

discuss more about customer journey analysis in Chapter 8.

Nowadays customers may provide feedback about your prod-

ucts or services along various social media channels such as

Twitter, Facebook, Instagram, etc. Continuously monitoring

these streams using social media analytics tools can provide

very useful insights into customer (dis)satisfaction which un-

doubtedly also affect your CLV. Note that this is also often re-

ferred to as social listening and can also highly contributed to

creating customer intimacy as we discuss below. In fact, one

pharmaceutical company we worked with, was doing this to

monitor the side effects of the drugs it was selling on social

media so as to get a holistic picture on its product usage.
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Finally, creating customer intimacy is another option. How-

ever, this is at the same time the most challenging strategy to

pursue as it highly depends upon a customer’s characteristics

or behavior. The goal is to be intrusive but in a subtle and well-

considered way so as to not create an unwanted disturbing ex-

perience to the customer. In fact, some customers (like us for

example) don’t like to be disturbed at all by their phone com-

panies, utility providers, financial institutions etc. Other ones

like to stay continuously updated about new deals and offer-

ings such that they can rest assured they always have the best

personalized deal. Distinguishing both groups of customers

and serving them according to their needs is a key challenge

to pursue customer intimacy. Developing highly personalized

relationships with customers is a key building block towards

customer intimacy.

Approaches To Model CLV

Various approaches can be adopted to model CLV. A first one

is by creating a data set using historically observed CLV values

for a representative group of customers as shown in Table 1.2.

This data set can then be analysed using classical predictive an-

alytical techniques such as linear regression, regression trees

(e.g., CART) and/or (deep learning) neural networks. The per-

formance of these can then be appropriately measured using,

e.g., mean squared error (MSE), mean absolute deviation (MAD)

or the Pearson correlation (our preferred method!) on an inde-
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pendent hold-out test set hereby assuring no data leakage.

Name Age Marital Status Income ... CLV
Bart 65 Married 25,000 2,500
Arno 49 Married 40,000 3,800
An 53 Single 60,000 5,000
Laura 50 Married 80,000 6,000
Sophie 44 Married 50,000 4,500
Victor 28 Single 30,000 2,800
...

Table 1.2: Example data set for CLV modeling.

However, note that perfectly quantifying the CLV is by no

means a trivial exercise. No firm in the world will be capable

to perfectly quantify all numbers (Rt, Ct, d, T , st) provided in

the reference formula. Hence, many firms will resort to ap-

proximative approaches by for example:

• focusing on very short time horizons, e.g., up to 1 year

• calculating CLV on a product basis, e.g., at the level of an

individual checking account

• only considering direct revenues and costs and ignoring

indirect costs and benefits which are hard to quantify

anyway

• ignoring the discounting factor

• working with average benefit and/or cost values instead

of precise values

• defining CLV segments instead of precise CLV values (e.g.,

Platinum, Gold, Silver, Bronze)

• decomposing CLV in some of its core elements such as

customer retention, customer acquisition, and customer

journey analysis
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All these approximations should not be seen as a showstop-

per. In fact, in the majority of cases firms can do perfectly well

with an ordinal ranking of their customers in terms of CLV in-

stead of a well-calibrated CLV. More specifically, being able to

rank your customers from high value to low value can already

be very useful for deciding who to target with your marketing

campaigns.

Closing Thoughts

In this chapter, we introduced the definition of CLV and dis-

cussed its various component. By now it should be clear that

accurately quantifying CLV is not an easy exercise. Hence, in

the following chapters, we gradually discuss all elements that

constitute CLVmodeling. We start with a refresher of basic an-

alytical tools that are prerequisite to understand the more ad-

vanced chapters. Next, we cover topics that allow to grow the

customer base by acquiring new customers, increase the value

of the existing customer base through customer development

techniques and retain more customers through customer re-

tention modeling. After reading this book, you will be ready to

put all this learning into practice.
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Application In Python/R

The software example onwww.CLVbook.com provides a simple

illustration of the calculation of CLV. We advise the reader to

try it out and then do some sensitivity analysis by playing with

the revenues, costs, survival probabilities, discount factor and

time horizon and evaluate the impact on the CLV.
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Quiz

Question 1

Milton Friedman introduced the age of shareholder primacy,

which basically implied that a key reason that companies exist

is to

(a) maximize shareholder value.

(b) maximize customer value.

Question 2

Tomaximize firm value firms should invest in their number one

asset:

(a) their infrastructure and equipment.

(b) their customers.

(c) their inventory.

(d) their know-how.

Question 3

Most modern day accounting standards and reporting rules

(a) do include customer value.

(b) do not include customer value.

Question 4

When calculating CLV, many firms set the time horizon T to
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(a) 1 year.

(b) 3-5 years.

(c) 10 years.

(d) infinity.

Question 5

In case the short-term relationship is considered important

when calculating CLV, it is recommended to set

(a) a low discount factor.

(b) a high discount factor.

Question 6

Which statement is CORRECT?

(a) Customer equity can be defined as the sum of the cus-

tomer lifetime values.

(b) Customer lifetime value can be defined as the sum of the

customer equity.

Question 7

Which actions can be undertaken to increase the CLV?

(a) retaining existing customers.

(b) deepening customer relationships.

(c) acquiring new customers.
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(d) simplifying customer experiences.

(e) customer intimacy.

(f) all of the above.
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291

next best offer, 89
node, 214
node2vec, 219
noise point, 337
non-contractual setting, 204, 312
non-hierarchical clusteirng, 271
non-hierarchical clustering, 336
non-parametric, 67
non-subscription setting, 204
normality, 67
NPS, see net promotor score, 24
nuke attack, 410

O
observation period, 208
observational data, 291
odds, 59
off-line campaign, 154
offer fatigue, 124, 184
OLS, see ordinary least squares
on-line campaign, 154, 182
on-line customer journey

analysis, 295
on-line retailer, 158
one-nearest neighbor, 237
open source software, 427
open-source, 70
OpenStreetMap, 158
operational efficiency, 166, 211
operational risk, 437
Operations Research, 258
opportunity cost, 202
opt-out, 184
optimal policy, 269
ordinal logistic regression, 274
ordinary least squares, 54, 57
OSM, see OpenStreetMap
outlier, 49, 337

detection, 50
treatment, 50

overfitting, 65, 70
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P
p-value, 113
page overlay report, 299
page tagging, 158, 296
PageRank, 155, 217
parallel changeover, 422
parametric survival analysis, 169
Pareto principle, 108
Pareto/NBD submodel, 312
partial dependence plots, 222
path analysis, 296
Pay per Click, 155
Pearson correlation, 75, 391, 401,

404
percentile value, 48
perfect model, 77
perfect uplift model, 178
performance, 166
performance measure, 71
performance period, 208
permutation-based feature

importance, 113
persistent cookie, 159, 298
personalized recommendation,

377
persuadables, 169, 220
phased changeover, 422
Pointillist, 289
Poisson distribution, 338
Poisson process, 313
polar coordinates, 164
policy iteration, 270
policy update, 269
polynomial regression, 55
popularity bias, 407
population distribution, 83
post processing, 45
post-pruning, 66
PPC, see Pay per Click
pre-pruning, 66
precision, 74, 166, 211, 235, 391, 392
predictive analytics, 91, 112

predictive model, 71, 165
predictive process monitoring,

295
prescriptive analytics, 171
prior probability, 88
privacy, 219, 434
Privacy Act of 1974, 436
privacy commission, 435
probability, 74
probability model, 312
process discovery, 294
process mining, 293
Proctor & Gamble, 287
product bundling, 85, 89
product specific segmentation,

333
product-specific segmentation

base, 332
productionization, 425
profiling, 353
profit, 167, 315, 396
profit based objective function,

231
profit driven classification, 231
profit driven evaluation, 223
profit-based hit rate, 233
ProfLogit, 231
ProfTree, 231, 233
promotor, 24, 205
proportional hazards regression,

169
proportional odds model, 275
prospect, 108, 124, 136, 141, 154, 166
prospect conversion prediction

modeling, 142
pruning, 66, 69
purchasing process, 185
push attack, 410

Q
Qini curve, 179
Qini measure, 179
quartile, 50
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first, 50
second, 50
third, 50

quintile, 115

R
random forests, 68, 69, 113, 222,

239
random model, 75, 179
ranking, 390, 392
rating bias, 385, 403, 405
rating matrix, 381, 398
recall, 74, 166, 211, 232, 235, 391
Receiver Operating Characteristic

curve, 72, 74
recency, 109, 313
recommender system, 89, 92, 181,

370
recurrent neural network, 92
recursive partitioning algorithm,

60
referral reward, 146
referrer information, 161
regression, 211
regression model, 75
regression tree, 61, 168
regressor, 53
regularization, 56
reinforcement learning, 268
relational network learner, 211
relationship buyer, 203
relevance score, 376
representation learning, 218
residual, 54, 70
response model, 109
response modeling, 154
response variable, 53
retention campaign, 230, 233
retention equity, 29
retention modeling, 202
RFM, 52, 108, 162, 317, 333

analysis, 260
dependent sorting, 116

framework, 108
independent sorting, 115
operationalizing, 114
usage, 118

RFM score, 114, 215
RFMPD, 121
ridge regression, 56
right to access, 435
right to be informed, 435
right to erase, 435
RMSE, see root mean squared

error
Rob Markey, 25
robust, 67
ROC, see Receiver Operating

Characteristic curve
Roger Martin, 23
root mean squared error, 77, 376,

391
root node, 61, 68
Royal Bank of Canada, 30
rule antecedent, 85, 87
rule based methods, 211, 335
rule based model, 343
rule consequent, 85, 87
runs on my machine

phenomenon, 425

S
sales funnel, 141, 142
sales qualified leads, 141
sampling, 47
SAS Institute, The (SAS), 429
scalability, 384, 396
scatter plot, 75
scroll map, 302
search engine marketing, 155
Search Engine Optimization, 155
search results, 155
search term, 155, 161
seasonality, 123
security, 429, 434
See5, 60
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segment, 77
segmentation, 304
self-organizing map, 343
senior management, 426
sensitivity, 74, 166, 223, 391
SEO, see Search Engine

Optimizationt
sequence, 89
sequence field, 90
sequence rule, 89
serendipity, 371, 378, 395
server log, 158

analysis, 158
service blue print, 294
service blueprint, 287
service desk interaction, 206
session cookie, 159
Shapley values, 113, 222
shareholder primacy, 22
shareholder value, 22
shelf organization, 85, 89
Shopif, 134
shortest path, 217
shrinkage, 56
silhouette criterion, 351
silhouette width criterion, 351
similarity forests, 237
similarity measure, 79, 401
simplicity, 66
single linkage, 80
Singular Value Decomposition

(SVD), 409
site abandonment rate, 185
skewness, 48
social influencer, 122
social leader, 213
social listening, 34
social media, 122
social media data, 138
social network, 213, 239
social tie, 215
sociodemographic data, 157, 205

software engineering, 425
SOM, see self-organizing map
sparsity, 384
Spearman’s rank order

correlation, 394
specification risk, 437
specificity, 74, 166, 223
splitting decision, 62, 66
Spotify, 181
SQL, see sales qualified leads
SQL view, 435
SSE, see sum of squared errors
stability index, 241
staging area, 291
standard deviation, 48, 67
standard error, 113
state stickiness, 277
static segmentation, 331
statistical rule, 86
stopping decision, 62, 67
store layout, 89
stress testing, 274
structural equivalence, 219
subscription setting, 203
substitution effect, 89
sum of squared errors, 82
support, 86, 88, 89
support vector machine, 211
sure things, 170, 220
survey, 205, 206, 290
survival analysis, 169, 239

T
target, 156, 165
target variable, 53, 83, 85, 205
technical debt, 423
Telco, 203, 207, 209, 213, 237, 240,

241
tenure, 111
ternary classification, 204
test set, 71, 175, 390
textual data, 207
third party cookie, 159
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three second rule, 184
threshold, 87
throughput, 396
tiering system, 335
time series, 112, 237
tobit regression, 168
top N ranking, 376
top decile lift, 212
top decile Qini, 179
total cost of ownership (TCO), 427
touch heatmap, 300
touchpoint, 291
trace, 290
traffic light, 433
training code, 424
training set, 65, 67, 71, 175
transaction buyer, 203
transaction identifier, 85
transactional data, 157, 205
transactions data set, 86
transition probability, 259
treatment, 171
treatment group, 172
tree boosting, 70
trend, 111
triangulation, 290
Tripadvisor, 380
true lift modeling, 169
true negative, 72, 224
true positive, 72, 224, 392
true positive rate, 211
truncation, 51
Twitter, 213
two-model approach, 171

U
undirected link, 215
unpersonalized recommendation,

377
unstable classifier, 68
unstructured data, 92, 207
unsupervised learning, 85, 325,

343

up-selling, 32, 180, 372
upgrade, 261
uplift, 176, 396
uplift by decile graph, 177
uplift effect, 124
uplift modeling, 169, 220
user, 376
user coverage, 395
user ID, 159
user interest, 379

explicit, 380
implicit, 380

user profile, 387
user-user collaborative filtering,

397
users flow report, 297
UV decomposition, 409

V
validation risk, 437
validation set, 65, 67, 71
value equity, 29
value iteration, 270
value update, 269
Vanguard, 23
variable selection, 173, 205
vector quantization, 343
vendor lock-in, 429
versioning, 427, 430
vertex, 214
viral churn effect, 214
virtualization, 427
visual data exploration, 47
visual evaluation, 176
Viterbi algorithm, 277
voucher, 118, 154

W
WACC, 26
weak classifier, 68
web analytics, 90, 122, 157, 205
web data, 138
web page, 85
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web scraping, 206
web server log, 295
web site design, 85
website, 155
weight matrix, 215
Whatsapp, 138
white box, 166, 221
winner take all, 62
winsorizing, 51
word-of-mouth, 157, 202, 213, 287
would-be churner, 226, 236

X
x-hop path, 217
X-selling, 32, 372
XGBoost, 68, 70, 113, 166, 168, 211,

218, 221, 430

Y
Yahoo, 155, 161
YouTube, 138, 184, 379

Z
z-score, 50, 79
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